2 Preliminary results
If \(a,b\) are nonnegative integers, then
The following lemma is the analogue of Fermat’s little theorem for Chebyshev polynomials.
Let \(p\) be an odd prime number. For every integer \(x\)
For every integer \(x\)
Let \(p\) be a prime number and \(x\) be an integer. Let \(m\) be the smallest positive integer such that \(T_{m}(x) \equiv 1 \mod p\). Then \(T_{n}(x) \equiv 1 \mod p\) for a positive integer \(n\) if and only if \(m \mid n\).
Lemmas 3 and 4 together with \(T_{1}(x)=x\) give the following.
If \(x\) is an integer and \(p\) is an odd prime number then \(\text{Che}_{p}(x)\) divides \(p-1\) or \(p+1\). In particular, \(\text{Che}_{p}(x)\) and \(p\) are coprime. If \(x\) is odd then \(\text{Che}_{2}(x)=1\). If \(x\) is even then \(\text{Che}_{2}(x)=2\).
For every \(n\ge 1\)
where \(\Omega _{1}(x)=x-1\) and for \(d\ge 2\)
and
Let \(m, n\) be positive integers. Then the polynomial \(\Omega _{mn}\) is a divisor of \(\Omega _{n}(T_{m}(x))\). If moreover \(n\ge 3\) and every prime divisor of \(m\) divides \(n\), then \(\Omega _{mn}=\Omega _{n}(T_{m}(x))\).
Let \(n\) be an odd natural number. Then \(\Omega _{n}(0)=\pm 1\). If moreover \(n\ge 3\) then \(\Omega _{2n}(x)=\pm \Omega _{n}(-x)\).
Let \(\mathbb {K}\) be a field of characteristic \(0\). Suppose that \(P\in \mathbb {K}[x]\), \(P(0)=\pm 1\), and \(P^{2}\in {\mathbb {Z}}[x]\). Then \(P\in {\mathbb {Z}}[x]\).
\(\Omega _{n}\in {\mathbb {Z}}[x]\).
Let \(x\) be an integer. Every primitive prime divisor of \(T_{n}(x)-1\) divides \(\Omega _{n}(x)\).
For every natural number \(n\) and every nonzero real number \(x\)
where the dots denote irrelevant terms.